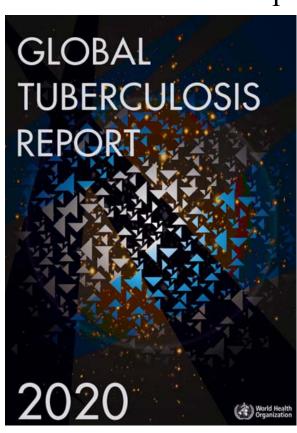
Clinical Utility of target amplicon sequencing for rapid diagnosis of drug resistant *Mycobacterium tuberculosis*

Dr. Yam Wing CheongPhD, FRCPath(UK), FFSc(RCPA)Honorary Associate ProfessorDept. of MicrobiologyThe University of Hong Kong

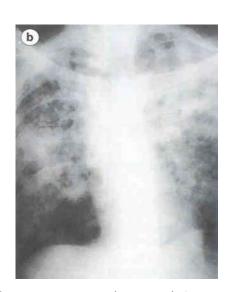

Tuberculosis (TB)

Mycobacterium tuberculosis (Mtb)

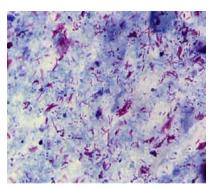
- Obligate aerobic acid-fast bacilli (AFB)
- Spread from person to person by aerosols
- Re-emerging problem in industrialized countries
- Infections among immuno-compromised patients
- Multi-drug resistant strains (MDR-TB)
- Pulmonary tuberculosis

The Global Tuberculosis (結核) Situation

WHO Tuberculois Report 2020


Summary

- Estimated 10.4 million new cases of TB
- •1.4 million people died from TB
- ■Hong Kong ~ 3,600 new cases / year
- •Top five high TB burden countries:
 - India
 - China
 - Nigeria
 - Indonesia
 - Pakistan



Diagnosis of Pulmonary Tuberculosis

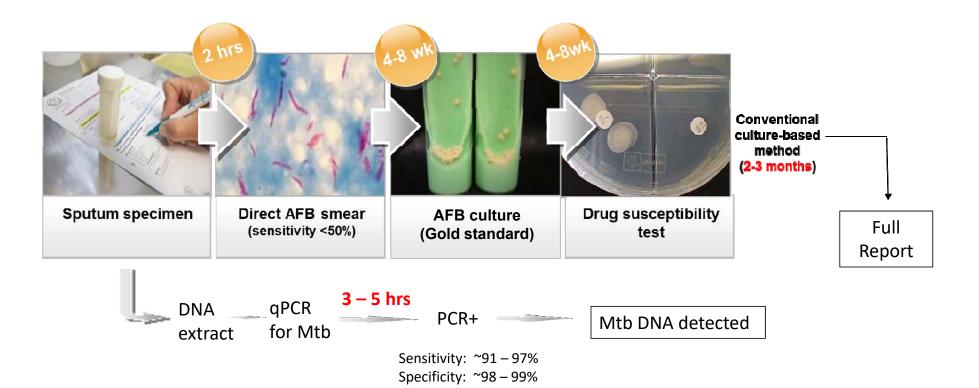
- Chest X-ray
- Direct smear for AFB in sputum
 - Turnaround Time < 2hr
 - Low sensitivity (<50%)
- Sputum culture for *M. tuberculosis* (very slow)
 - 2~4 week (Solid LJ medium); 1-3 week (Liquid MGIT broth)
 - 1~2 week (identification)
 - High sensitivity (gold standard)

Conventional Laboratory Diagnosis for Tuberculosis

Molecular Diagnosis for Tuberculosis

DNA Amplification assay (eg PCR):

- Rapid diagnosis
- High sensitivity
- High specificity
- Simple setup (Commercial systems)


Cepheid (GeneXpert)

Abbott (m2000TB)

Molecular Diagnosis

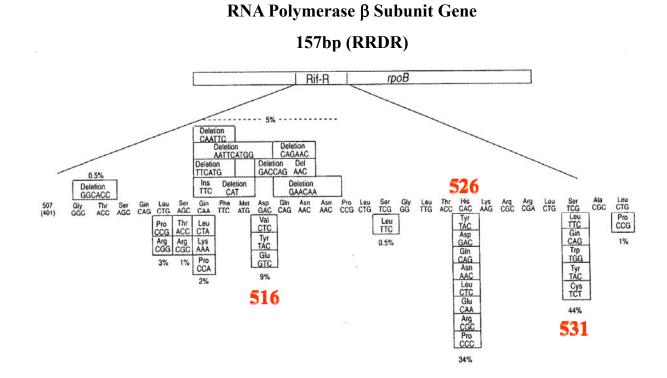
Multidrug Therapy for Tuberculosis

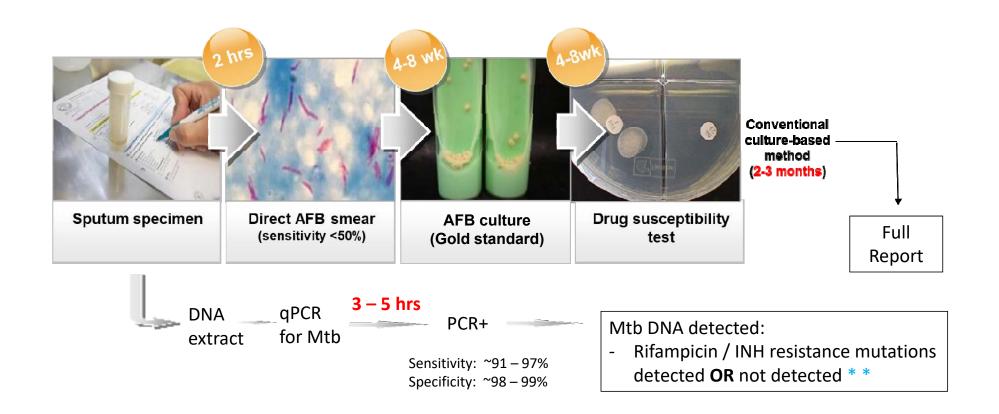
- 3 9 months treatment of 2-3 primary drugs:
- Rifampicin
- Isoniazid (INH)
- Streptomycin
- Ethambutol
- Pyrazinamide

Drug Susceptibility Testing (DST) for Mycobacterium tuberculosis

Agar Proportion Method

MGIT960


P3 Laboratory in QMH, HKU

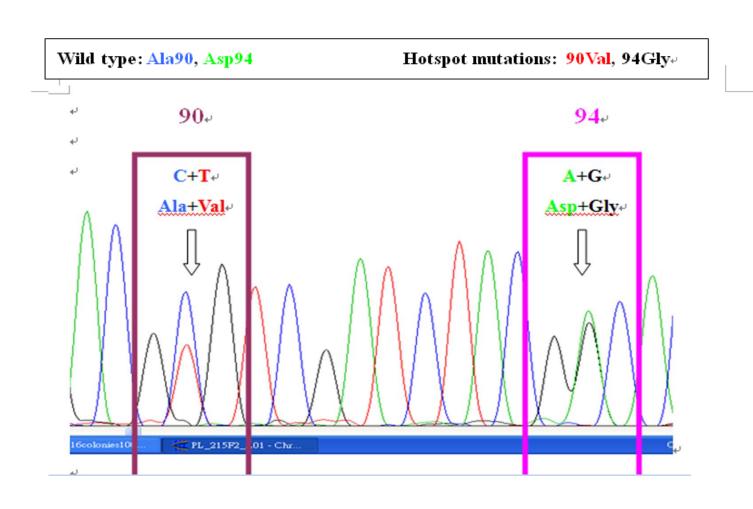

Rifampicin (1)

• Resistance caused by the mutation in *rpoB* gene (Rifampicin resistance-determining region - RRDR)

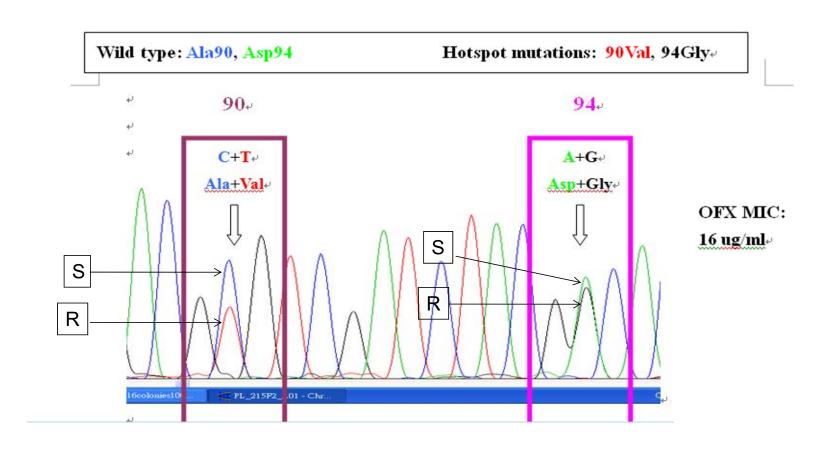
Rifampicin (2)

- An effective anti-tuberculosis agent
- A surrogate marker of Multidrug-resistant tuberculosis (MDR-TB)
- Rapid detection is important for the treatment and control of tuberculosis
- Drug resistance detection by qPCR in commercial systems:
 - GeneXpert Rifampicin [Molecular Beacons Probes]
 - Abbott m2000TB Rifampicin and Isoniazid (INH) [Taqman Probes]

^{* *} Retrospective Analysis of False-positive and Disputed Rifampin Resistance Xpert MTB/RIF Assay Results in Clinical Samples from a Referral Hospital in Hunan, China.

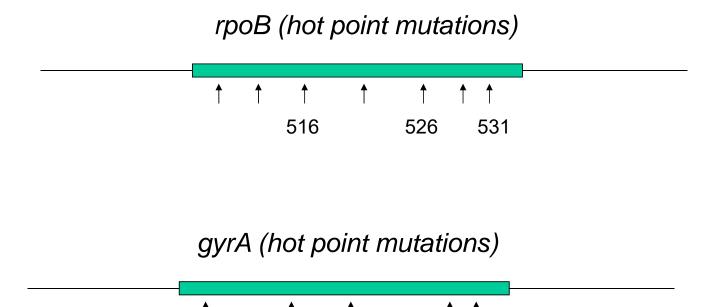

* * Retrospective Analysis of False-positive and Disputed Rifampin Resistance Xpert MTB/RIF Assay Results in Clinical Samples from a Referral Hospital in Hunan, China.

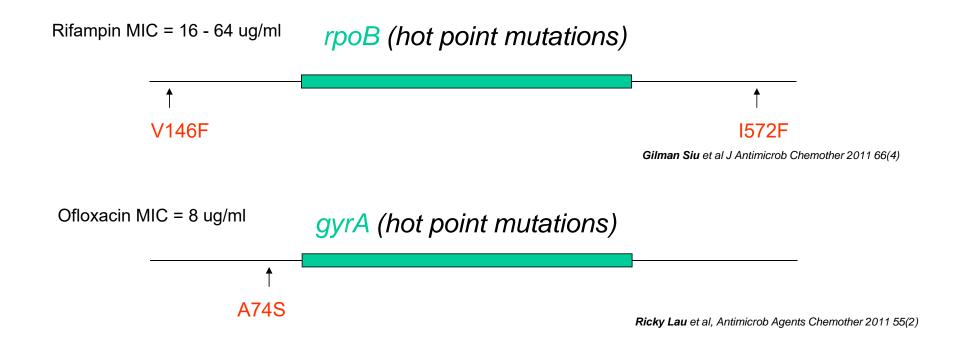
* * * Retrospective Analysis of False-positive and Disputed Rifampin Resistance Xpert MTB/RIF Assay Results in Clinical Samples from a Referral Hospital in Hunan, China.


Fluoroquinolones

- Resistance caused by the mutation in gyr gene
- DNA gyrase (Quinolone resistance-determining region -QRDR) - Ofloxacin
- Most gyrase A missense mutations were found at positions 90, 91, and 94 that were located within QRDR.
 - Significant increase in MIC (>4.8μg/ml).

Sanger Sequencing of gyrA gene Mtb in Sputum


Culture confirmation: Mtb - INH^R; Rif^R; OFX^R

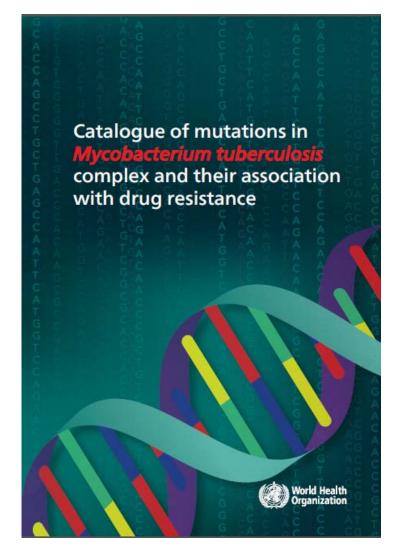

Extensively Drug Resistant Tuberculosis (XDR-TB)

- pre-XDR-TB is: MDR-TB strains which are also resistant to any fluoroquinolone.
- XDR-TB is: MDR-TB strains which are also resistant to any fluoroquinolone and at least one additional Group A drug (Group A drugs are the most potent group of drugs in the ranking of second-line medicines for the treatment of drug-resistant forms of TB using longer treatment regimens and comprise levofloxacin, moxifloxacin, bedaquiline and linezolid).

Known mutations associated with Rifampin and Ofloxacin resistance

Novel mutations associated with Rifampin, Ofloxacin and Pyrazinamide resistance

Pyrazinamide


Direct Detection of Pyrazinamide Resistance in Mycobacterium tuberculosis by Use of pncA PCR Sequencing.

Kingsley Tam et al, J Clin Microbiol 2019 57.

Submission of **novel** drug resistance mutations to World Health Organization (WHO)

DNA Sanger Sequencing:

- Provides more reliable results to resolve False Resistant/ Susceptible data of commercial diagnostic kits
- Tedious and time consuming (long turnaround time) unsuitable for routine diagnostic application
- Requires higher bacterial load in the sputum for DNA sequencing most drug resistance mutations of common anti-tuberculosis drugs.

Next Generation Sequencing (NGS) for Infectious Diseases

- Full Genome Sequencing for epidemiological tracing:
 - SARS-CoV-2 causing COVID-19 pandemic
 - EHEC O157:H7 causing food poisoning
- Target Amplicon Sequencing:
 - Detection of gene mutations associated with microbial drug resistance
 - A total 163 drug resistant isolates (HK: 93 + Africa: 70) were tested in parallel with Phenotypic Drug Susceptibility Test (pDST)

478 Table 1. Gene targets for target amplicon sequencing

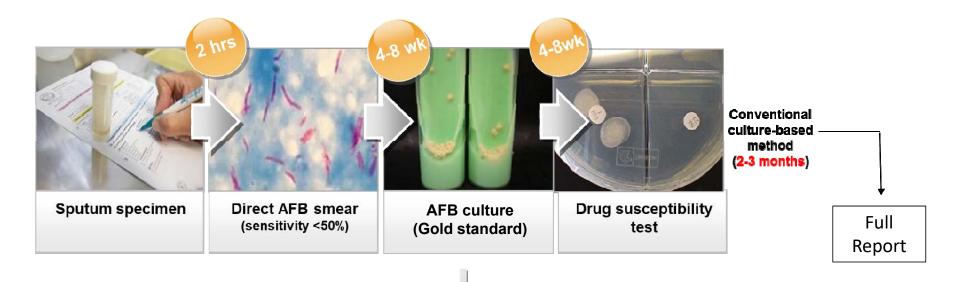
Drug	Gene	Amplicon Size (bp)	Major Mutation covered*
Rifampicin	rpoB-RRDR ¹	288	rpoB RRDR
	rpoB-full ¹	1,311	rpoB RRDR, V146F, I572F
Isonizid	katG	435	katG S315T
	inhA promoter	454	inhA C-15T
	inhA structural	922	inhA codon 94 and 95
	katG-furA intergenic region	892	furA codon 4, -134bp upstream deletion
Ethambutol	embB	955	embB M306V/I, G406A/D/S
	ubiA	1,119	Compensatory mutation
Pyrazinamide	pncA	813	Entire gene
	rpsA	1601	Entire gene
Fluoroquinolones	gyrA	751	90-94 QRDR
	gyrB	1054	N538D/E540V
Aminoglycosides	gis, promoter	593	C-14T,C-12T, G-10A, G-10C
	rpsL	472	K43R/K88Q
	ZZS.	1,211	C1400,A1401/C1483
Capreomycin	tylA	945	R3*; Q22*
			Lost of tlyA expression
Linezolid	rplC	710	G2061T/G2576T
	rrl	1,102	T460C

⁴⁷⁹ Two sets of primers were designed for rpoB to ensure a better coverage at 81bp RIF resistance

⁴⁸⁰ determining regions

Target Amplicon Sequencing for Mycobacterium tuberculosis isolates

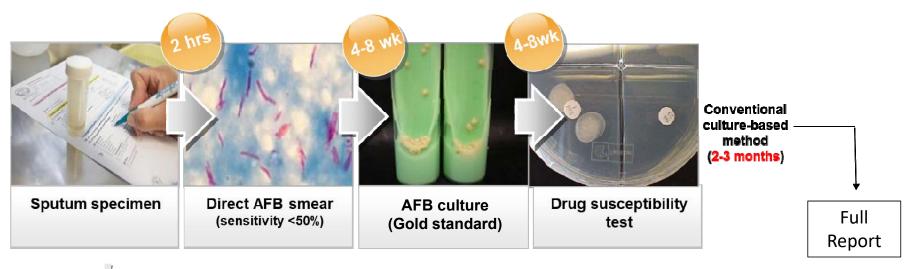
Table 1. Phenotypic drug resistance profiles of 163 M. tuberculosis clinical isolates.										
Drug	Total number of isolates	pDST tested isolates	Number of resistant isolates (%)	Drug resistance pattens	(number, %)					
INH	163	163	87 (53.4)	MDR (60, 36.8%)	XDR (10, 10.8%) ^c					
RIF	163	163	65 (40.0)							
EMB	163	163	37 (22.7)	MDR + EMB/STR (54, 33.1%)						
STR	163	163	72 (44.2)							
PZA	163	93ª	44 (47.3)	MDR +PZA (40, 43.0%) ^c						
KAN	163	93ª	32 (34.4)	MDR +SLIDs (30, 32.3%) ^c						
AMK	163	93ª	31 (33.3)							
CAP	163	90ª	28 (31.1)							
OFX	163	93ª	25 (26.9)	$MDR + FQs (20, 21.5\%)^{c}$						
MOX	163	92ª	23 (25.0)							
BQ	163	$0_{\rm p}$	0							
LZ	163	$0_{\rm p}$	0							


INH, Isoniazid; RIF, Rifampicin; EMB, Ethambutol; PZA, Pyrazinamide; STR, Streptomycin; KAN, Kanamycin; AMK, Amikacin; CAP, Capreomycin; OFX, Ofloxacin; MOX, Moxifloxacin; BD, Bedaquiline; LZ, Linezolid; MDR, multidrug resistance; XDR, extensive drug resistance; FQ, fluoroquinolones; SLIDs, second-line injectable drugs.

**Based on routine practice in the Asella Hospital in Ethiopia, pDST for M. tuberculosis clinical isolates included only INH, RIF, EMB, and STR. Therefore the pDST results for PZA.

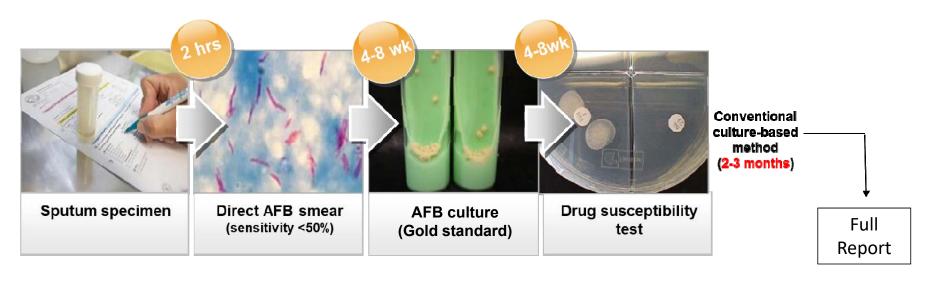
^aBased on routine practice in the Asella Hospital in Ethiopia, pDST for *M. tuberculosis* clinical isolates included only INH, RIF, EMB and STR. Therefore, the pDST results for PZA, KAN, AMK, CAP, OFX, and MOX were not available for *M. tuberculosis* strains isolated from Ethiopia.

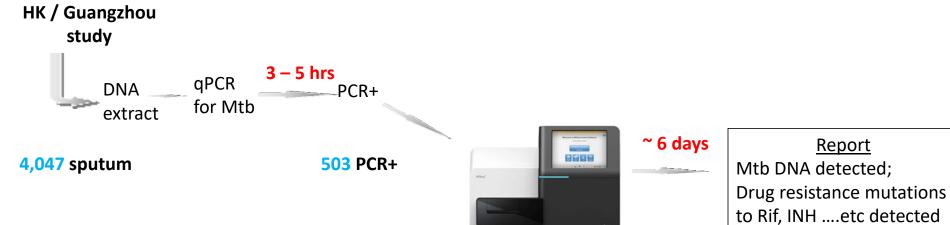
^bBQ and LZ pDST results were not available in this study because of unavailability of the respective drugs in our regions.


^cThe percentages were calculated based on the total number of M. tuberculosis isolates subjected to pDST for PZA, KAN, AMK, CAP, OFX, and MOX.

Next Generation Sequencing

Next Generation Sequencing



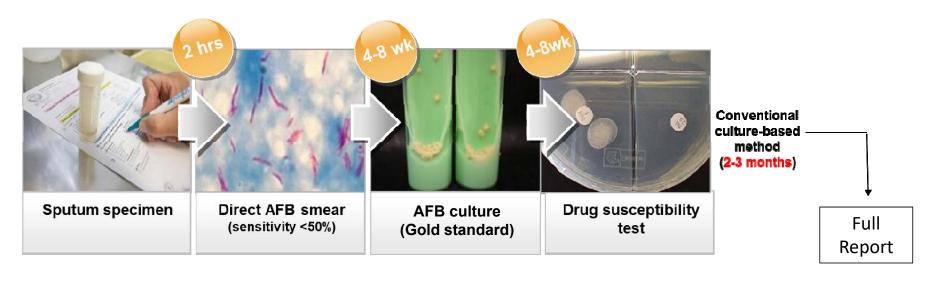

Joint Study (>4,000 specimens)

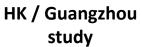
- HKU/QMH/Chest Clinics
- KingMed Diagnostics, Guangzhou, China

NGS setup (CE-IVD)

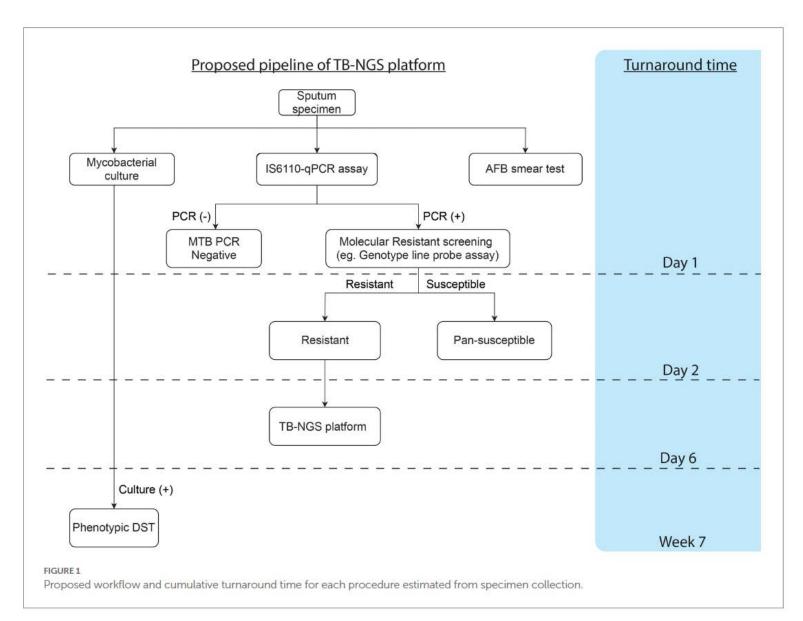
- Illumina® Miseq
- Bacteriochek[™] (Advanced Biological Laboratories S.A., Luxembourg)

Phenotypic DST profiles of MTBC culture positive strains from Hong Kong and Guangzhou by phenotypic DST in this study


Specimen type	Resistance pattern defined by	No. of	Phenotypic drug susceptibility patterns									
	TB-NGS	specimens	culture (+)	RIF	INH	EMB	PZA	STR	FLQ	CAP	AMI	LZD
Genotypic drug resistance	Drug resistant TB (n=14)	2	1	R	S	S	S	S	S	S	S	S
defined by MTBDR assay		1	1	R	S	S	S	R	S	S	S	S
(n=24)		5	2	S	R	S	S	S	S	S	S	S
		1	1	S	R	R	S	S	S	S	S	S
		1	1	S	R	R	S	R	S	S	R	S
		4	3	S	R	S	S	R	S	S	S	S
	MDR-TB (n=4)	2	2	R	R	R	R	S	S	S	S	S
		2	2	R	R	S	S	R	S	S	S	S
	Pre-XDR-TB (n=6)	2	2	R	R	R	S	S	R	S	S	S
		4	4	R	R	R	S	R	R	S	S	S
Drug resistance not detected by MTBDR assay (n=479)	Drug resistant TB (n=2)	2	2	S	S	S	S	R	S	S	S	S
	Minor variant (n=3)a, b, c	3	3	S	S	S	S	S	S	S	S	S
	Pan- susceptible TB (n=462)	462	448	S	S	S	S	S	S	S	S	S
	Unsuccessful sequencing (n=12)	9	7	S	S	S	S	S	S	S	S	S


Abbreviation: RIF, rifampicin, INH, isoniazid; EMB, ethambutol, PZA, pyrazinamide; FLQ, fluoroquinolones; STR, streptomycin; AMIs, aminoglycosides; CAP, capreomycin; LZD, linezolid

Phenotypic DST profiles of MTBC culture positive strains from Hong Kong and Guangzhou by phenotypic DST in this study


Specimen type	Resistance pattern defined by	No. of	Phenotypic drug susceptibility patterns									
	TB-NGS	specimens	culture (+)	RIF	INH	EMB	PZA	STR	FLQ	CAP	AMI	LZD
Genotypic drug resistance defined by MTBDR assay (n=24)	Drug resistant TB (n=14)	2	1	R	S	S	S	S	S	S	S	S
		1	1	R	S	S	S	R	S	S	S	S
		5	2	S	R	S	S	S	S	S	S	S
		1	1	S	R	R	S	S	S	S	S	S
		1	1	S	R	R	S	R	S	S	R	S
		4	3	S	R	S	S	R	S	S	S	S
	MDR-TB (n=4)	2	2	R	R	R	R	S	S	S	S	S
		2	2	R	R	S	S	R	S	S	S	S
	Pre-XDR-TB (n=6)	2	2	R	R	R	S	S	R	S	S	S
		4	4	R	R	R	S	R	R	S	S	S
Drug resistance not detected by MTBDR assay (n=479)	Drug resistant TB (n=2)	2	2	S	S	S	S	R	S	S	S	S
	Minor variant (n=3)a, b, c	3	3	S	S	S	S	S	S	S	S	S
	Pan- susceptible TB (n=462)	462	448	S	S	S	S	S	S	S	S	S
	Unsuccessful sequencing (n=12)	9	7	S	S	S	S	S	S	S	S	S

Abbreviation: RIF, rifampicin, INH, isoniazid; EMB, ethambutol, PZA, pyrazinamide; FLQ, fluoroquinolones; STR, streptomycin; AMIs, aminoglycosides; CAP, capreomycin; LZD, linezolid

Kenneth Leung et al. Front Microbiol. 2022 Sep :13

Conclusions

- PCR provides rapid molecular diagnosis of *M. tuberculosis*
- As Next Generation Sequencing (NGS) is expensive and technically complicated, a good diagnostic algorithm and workflow would provide a cost-effective routine service with an average turnaround time of 6 working days.
- Molecular diagnosis cannot replace conventional laboratory practice:
 - Conventional culture of M. tuberculosis isolates is required for epidemiological surveillance
 - Anti-mycobacterial susceptibility testing (DST)

Acknowledgements

The University of HK:

Dr. Kenneth Leung

Dr. Kingsley Tam

TB & Chest Service, Dept of Health, Hong Kong:

Dr. CC Leung

Dr. CK Chan

Dr. KC Chang

HK Polytechnic University:

Dr. Gilman Siu

Johns Hopkins University:

Prof Y Zhang

KingMed Diagnostics, Guangzhou, China.

Funding:

The Science and Technology
 Planning Project of Guangdong
 Province, China (Grant Number: 2019B121205010)